INORGANIC COMPOUNDS

Acta Cryst. (1994). C50, 327-330

Hexasodium Trihydrogen Decatungstosamarate Octacosahydrate

Tomon Ozeki and Toshihiro Yamase
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan
(Received 22 July 1993; accepted 17 September 1993)

Abstract

The title compound, $\mathrm{Na}_{6} \mathrm{H}_{3}\left[\mathrm{SmW}_{10} \mathrm{O}_{36}\right] .28 \mathrm{H}_{2} \mathrm{O}$, consists of a decatungstosamarate anion, six fivefold- or sixfoldcoordinated Na^{+}cations and water molecules of crystallization. The decatungstosamarate anion is comprised of two $\left[\mathrm{W}_{5} \mathrm{O}_{18}\right]^{6-}$ moieties chelating to a central Sm^{3+} cation, which has tetragonal antiprismatic coordination with D_{4} symmetry and Sm - O distances of 2.41-2.46 \AA.

Comment

Photoluminescence of polyoxotungstolanthanoates and polyoxomolybdolanthanoates has been studied extensively for various kinds of polyoxoanions, which include $\mathrm{Na}_{7} \mathrm{H}_{2}\left[\mathrm{LnW}_{10} \mathrm{O}_{36}\right] \cdot x \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Ln}=\mathrm{Eu}^{3+}, \mathrm{Pr}^{3+}\right.$ and $\left.\mathrm{Nd}^{3+}\right)$ and $\mathrm{K}_{13}\left[\mathrm{Eu}\left(\mathrm{SiW}_{11} \mathrm{O}_{39}\right)_{2}\right] \cdot x \mathrm{H}_{2} \mathrm{O}$ (Stillman \& Thomson, 1976), $\mathrm{Na}_{9}\left[\mathrm{LnW}_{10} \mathrm{O}_{36}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Ln}=\mathrm{Sm}^{3+}, \mathrm{Tb}^{3+}, \mathrm{Dy}^{3+}\right.$ and Eu^{3+}) and $\mathrm{K}_{17}\left[\mathrm{Eu}\left(\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right)_{2}\right] \cdot x \mathrm{H}_{2} \mathrm{O}$ (Blasse, Dirksen \& Zonnevijlle, 1981), $\mathrm{K}_{15} \mathrm{H}_{3}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\right.$ $\left.\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right] .25 .5 \mathrm{H}_{2} \mathrm{O}$ (Yamase, Naruke \& Sasaki, 1990), $\left(\mathrm{NH}_{4}\right)_{12} \mathrm{H}_{2}\left[\mathrm{Eu}_{4}\left(\mathrm{MoO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\left(\mathrm{Mo}_{7} \mathrm{O}_{24}\right)_{4}\right] .13 \mathrm{H}_{2} \mathrm{O}(\mathrm{Nar}-$ uke, Ozeki \& Yamase, 1991; Naruke \& Yamase, 1991), $\mathrm{Eu}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\left[\mathrm{Mo}_{8} \mathrm{O}_{27}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Yamase \& Naruke, 1991), $\mathrm{K}_{3} \mathrm{Na}_{4} \mathrm{H}_{2}\left[\mathrm{TbW}_{10} \mathrm{O}_{36}\right] .20 \mathrm{H}_{2} \mathrm{O}$ (Ozeki \& Yamase, 1993a; Ozeki, Takahashi \& Yamase, 1992), and $\mathrm{Na}_{9}\left[\mathrm{EuW}_{10} \mathrm{O}_{36}\right]_{-}$ $.32 \mathrm{H}_{2} \mathrm{O}$ (Sugeta \& Yamase, 1993). In our previous study of the photoluminescence of decatungstoterbates, the counter cations of the polyoxometallate anions were found to influence the photoluminescence properties of the polyoxometallate solid (Ozeki \& Yamase, 1993a). The crystal structure analysis of the title compound was undertaken in order to investigate the effect of the counter cations of the decatungstosamarate anion on its crystal and molecular structure. We are particularly interested in the coordination of the luminescent centre of the SmO_{8} square antiprism, since this might indicate factors influencing its photoluminescence properties.

The title compound was obtained from an attempt to prepare the all-ammonium salt of the decatungstosama-
rate anion. The pH of a 40 ml aqueous solution containing $16.4 \mathrm{~g} \mathrm{Na}_{2} \mathrm{WO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ was brought to 7 by adding $\mathrm{CH}_{3} \mathrm{COOH} .2 .00 \mathrm{~g}$ of $\mathrm{Sm}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} .4 \mathrm{H}_{2} \mathrm{O}$ in 30 ml $\mathrm{H}_{2} \mathrm{O}$ and 0.80 g of $\mathrm{NH}_{4} \mathrm{Cl}$ in $10 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ were added. Colourless crystals of sodium paratungstate precipitated after several hours and were filtered off. By keeping the filtrate at room temperature for two months, colourless crystals of the title compound were obtained.

Fig. 1 shows the structure of the $\left[\mathrm{SmW}_{10} \mathrm{O}_{36}\right]^{9-}$ anion. It consists of a central Sm^{3+} cation and two $\left[\mathrm{W}_{5} \mathrm{O}_{18}\right]^{6-}$ moieties. The latter may be regarded as derived by the removal of a WO_{6} octahedron from a $\left[\mathrm{W}_{6} \mathrm{O}_{19}\right]^{2-}$ anion. It has a square array of O atoms at the lacunary site. Square arrays of O atoms from two $\left[\mathrm{W}_{5} \mathrm{O}_{18}\right]^{6-}$ moieties face each other, rotated by 41° to give a square antiprism of D_{4} symmetry, at the centre of which is located the Sm^{3+} cation. Compared to the geometry of the SmO_{8} square antiprism in the compound $\mathrm{K}_{3} \mathrm{Na}_{4} \mathrm{H}_{2}\left[\mathrm{SmW}_{10} \mathrm{O}_{36}\right] .22 \mathrm{H}_{2} \mathrm{O}$ (Ozeki \& Yamase, 1993b), the SmO_{8} square antiprism in this compound is elongated along its fourfold axis. Also, the twist angle from the ideal $D_{4 d}$ value of 45° is 4°, which is 2° larger than the value found in the SmO_{8} square antiprism in $\mathrm{K}_{3} \mathrm{Na}_{4} \mathrm{H}_{2}\left[\mathrm{SmW}_{10} \mathrm{O}_{36}\right] .22 \mathrm{H}_{2} \mathrm{O}$. The Sm-O distances vary from 2.41 (1) to 2.46 (1) \AA [average 2.43 (2) \AA] and are shorter than the Sm -O distances in $\mathrm{K}_{3} \mathrm{Na}_{4} \mathrm{H}_{2}\left[\mathrm{SmW}_{10} \mathrm{O}_{36}\right] .22 \mathrm{H}_{2} \mathrm{O}$ [2.42 (2)-2.49 (2), average 2.47 (3) \AA]. As a result of the trans influence, the

Fig. 1. ORTEPII (Johnson, 1976) drawing of the $\left[\mathrm{SmW}_{10} \mathrm{O}_{36}\right]^{9-}$ anion. Thermal ellipsoids are shown at 50% probability levels.

W-O bonds trans to the Sm-O bonds are $1.76(1)-$ 1.80 (1) \AA [average 1.78 (1) \AA], which are longer than the corresponding $\mathrm{W}-\mathrm{O}$ distances in $\mathrm{K}_{3} \mathrm{Na}_{4} \mathrm{H}_{2}$ [$\mathrm{SmW}_{10} \mathrm{O}_{36}$]$.22 \mathrm{H}_{2} \mathrm{O} \quad[1.72(2)-1.77(1)$, average $1.75(2) \AA]$. The $\mathrm{Sm}-\mathrm{W}$ distances are $3.815(1)-3.842(1) \AA$ [average 3.832 (8) \AA], which are shorter than the $\mathrm{Sm}-\mathrm{W}$ distances in $\mathrm{K}_{3} \mathrm{Na}_{4} \mathrm{H}_{2}\left[\mathrm{SmW}_{10} \mathrm{O}_{36}\right] .22 \mathrm{H}_{2} \mathrm{O}$ [3.820(2)-3.889(2), average $3.85(2) \AA$ A . Unlike in $\mathrm{K}_{3} \mathrm{Na}_{4} \mathrm{H}_{2}$ [$\mathrm{SmW}_{10} \mathrm{O}_{36}$]$.22 \mathrm{H}_{2} \mathrm{O}$, where K^{+}cations are multiply coordinated to the O atoms of the $\left[\mathrm{SmW}_{10} \mathrm{O}_{36}\right]^{9-}$ anions and thus give rise to a distortion of the structure of the polyoxoanion (Ozeki \& Yamase, 1993b), no counter cations are multiply coordinated to the $\left[\mathrm{SmW}_{10} \mathrm{O}_{36}\right]^{9-}$ anion in the crystal of the title compound, so the $\mathrm{Sm}-\mathrm{W}$ distances are similar for the two $\left[\mathrm{W}_{5} \mathrm{O}_{18}\right]^{6-}$ moieties.

Fig. 2 shows a packing diagram of the crystal viewed down the c^{*} axis. Each of the six Na atoms is coordinated by either five or six O atoms with $\mathrm{Na}-\mathrm{O}$ distances of 2.28 (2) -2.55 (2) \AA [average 2.43 (7) \AA]. The last ten O atoms of the water molecules of crystallization to be located (060-069) had large temperature factors and in some of them interatomic distances were unacceptably short [1.91 (4)-2.51 (4) \AA]. It is convenient to divide the O atoms into three sets: set A comprises O1-O59, set B 060-O66 and set C 067-O69. There are no contacts of less than $2.67 \AA$ between members of set $A+B$ nor between members of set $A+C$. However, each member in set B has contacts less than $2.6 \AA$ with one or more members in set C, and vice versa. Thus, a common site occupancy factor was applied to the members of set B and its

Fig. 2. Packing diagram of $\mathrm{Na}_{6} \mathrm{H}_{3}\left[\mathrm{SmW}_{10} \mathrm{O}_{36}\right] .28 \mathrm{H}_{2} \mathrm{O}$ viewed down the c^{\star} axis. Thermal ellipsoids are shown at 50% probability levels. Na atoms are shown as ellipsoids with shaded octants.
complement was used as the site occupancy factor for the members of set C. After several least-squares refinements with various site occupancy factors for sets B and C, the value of 0.5 for both sets B and C was found to give the most reasonable temperature factors for all the O atoms in both sets.

Experimental

Crystal data
$\mathrm{Na}_{6} \mathrm{H}_{3}\left[\mathrm{SmW}_{10} \mathrm{O}_{36}\right]$.$28 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=3210.3$
Triclinic
$P \overline{1}$
$a=12.945$ (2) \AA
$b=20.212$ (4) \AA
$c=12.882$ (3) \AA
$\alpha=98.50(2)^{\circ}$
$\beta=102.19$ (2) ${ }^{\circ}$
$\gamma=101.11(2)^{\circ}$
$V=3170(2) \AA^{3}$
$Z=2$
$D_{x}=3.36 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=10.0-12.5^{\circ}$
$\mu=19.08 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.35 \times 0.25 \times 0.20 \mathrm{~mm}$
Colourless

Data collection

Rigaku AFC-5S diffractome-
ter
$\omega / 2 \theta$ scans

Absorption correction:
empirical via ψ scans
(North, Phillips \&
Mathews, 1968)
$T_{\text {min }}=0.76, T_{\text {max }}=1.00$
19219 measured reflections
18463 independent reflections

11833 observed reflections

$$
\begin{gathered}
{[I>3 \sigma(I)]} \\
\theta_{\max }=30.0^{\circ} \\
h=-18 \rightarrow 17 \\
k=-28 \rightarrow 28 \\
l=0 \rightarrow 18
\end{gathered}
$$

3 standard reflections monitored every 100 reflections intensity variation: -10.3\%

Refinement

Refinement on F
$R=0.049$
$w R=0.060$
$S=1.76$
11833 reflections
725 parameters
Calculated weights
$w=1 /\left[\sigma^{2}(F)+0.000225 F^{2}\right]$

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$
$(\Delta / \sigma)_{\text {max }}=0.01$
$\Delta \rho_{\text {max }}=3.82 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-4.74 \mathrm{e}^{-3}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

	x	y	z	$U_{\text {eq }} / U_{\text {iso }}$
W0	$0.03039(7)$	$0.30155(4)$	$0.33577(6)$	0.0325
W1	$0.15445(6)$	$0.17413(3)$	$0.37121(5)$	0.0218
W2	$0.03997(5)$	$0.23318(3)$	$0.55701(5)$	0.0183
W3	$0.18460(6)$	$0.38813(3)$	$0.57827(6)$	0.0266
W4	$0.30084(7)$	$0.32928(4)$	$0.39285(6)$	0.0356
W5	$0.67418(5)$	$0.20457(4)$	$0.95088(6)$	0.0247
W6	$0.42291(5)$	$0.11998(3)$	$0.81419(5)$	0.0197
W7	$0.46230(5)$	$0.27533(3)$	$0.95552(5)$	0.0189
W8	$0.63791(5)$	$0.33400(4)$	$0.82477(6)$	0.0233
W9	$0.59897(5)$	$0.17915(4)$	$0.68051(6)$	0.0260

Sm	0.34806 (7)	0.25510 (4)	0.64987 (7)	0.0190
NaI	0.0683 (6)	0.2609 (4)	0.9464 (6)	0.040
Na 2	0.0123 (6)	0.0932 (4)	0.8753 (7)	0.038
Na 3	0.4061 (8)	0.0765 (5)	0.2147 (8)	0.055
Na 4	0.6922 (7)	0.0837 (5)	0.2892 (7)	0.047
Na 5	0.7765 (8)	0.0598 (6)	0.6000 (8)	0.060
Na6	0.8844 (9)	0.4656 (5)	0.7639 (8)	0.061
O1	-0.070 (1)	0.3162 (7)	0.234 (1)	0.056
O2	0.0416 (10)	0.2109 (6)	0.2775 (9)	0.028
O3	-0.048 (1)	0.2602 (7)	0.427 (1)	0.033
O4	0.066 (1)	0.3829 (6)	0.444 (1)	0.039
O5	0.160 (1)	0.3347 (7)	0.2937 (10)	0.039
O6	0.132 (1)	0.0963 (6)	0.2843 (10)	0.035
O7	-0.066 (1)	0.2000 (7)	0.608 (1)	0.035
O8	0.185 (1)	0.4685 (6)	0.643 (1)	0.043
O9	0.387 (1)	0.3663 (8)	0.321 (1)	0.062
O10	0.0420 (9)	0.1547 (5)	0.4503 (9)	0.022
$\mathrm{Ol1}$	0.0668 (9)	0.3304 (6)	0.6183 (9)	0.025
012	0.280 (1)	0.4085 (6)	0.4825 (10)	0.040
O 13	0.258 (1)	0.2337 (7)	0.3164 (9)	0.033
O14	0.1636 (10)	0.2814 (6)	0.4684 (9)	0.024
015	0.2559 (9)	0.1685 (6)	0.4844 (9)	0.025
O16	0.1550 (9)	0.2233 (6)	0.6503 (9)	0.021
017	0.2872 (9)	0.3614 (6)	0.6682 (9)	0.025
O18	0.390 (1)	0.3081 (7)	0.5034 (9)	0.033
019	0.3284 (9)	0.1481 (6)	0.7168 (9)	0.023
O20	0.3637 (9)	0.2865 (6)	0.8438 (9)	0.023
O21	0.519 (1)	0.3393 (6)	0.729 (1)	0.032
O 22	0.4881 (10)	0.2022 (7)	0.6013 (10)	0.031
O 23	0.5359 (9)	0.2243 (6)	0.8249 (9)	0.022
O24	0.3933 (9)	0.1767 (6)	0.9351 (9)	0.022
O25	0.5726 (9)	0.3508 (6)	0.9439 (9)	0.026
O26	0.6820 (9)	0.2731 (7)	0.718 (1)	0.032
O 27	0.5068 (9)	0.0993 (6)	0.709 (1)	0.028
O28	0.3557 (10)	0.0382 (6)	0.818 (1)	0.028
O29	0.421 (1)	0.3074 (7)	1.0692 (10)	0.036
O30	0.728 (1)	0.4118 (7)	0.839 (1)	0.041
O31	0.661 (1)	0.1408 (8)	0.589 (1)	0.043
O32	0.5622 (9)	0.1222 (6)	0.923 (1)	0.029
O33	0.5918 (9)	0.2454 (6)	1.0363 (9)	0.023
O34	0.7340 (9)	0.2928 (6)	0.932 (1)	0.029
O35	0.7019 (9)	0.1699 (7)	0.817 (1)	0.031
036	0.778 (1)	0.1856 (7)	1.043 (1)	0.040
037	0.1557 (9)	0.1786 (6)	0.8497 (10)	0.029
O38	0.831 (1)	0.0609 (7)	0.431 (1)	0.041
O39	-0.0826 (10)	0.1838 (7)	0.8150 (10)	0.034
O40	-0.057 (1)	0.0375 (6)	0.683 (1)	0.033
041	-0.115 (1)	0.0025 (7)	0.903 (1)	0.043
O42	0.538 (1)	0.0434 (7)	0.358 (1)	0.050
O43	0.289 (1)	-0.0293 (8)	0.240 (1)	0.046
O44	0.840 (1)	0.1160 (7)	0.205 (1)	0.046
O45	-0.001 (1)	0.1682 (9)	1.043 (1)	0.058
O46	0.973 (1)	0.5005 (8)	0.632 (1)	0.059
O47	0.141 (1)	0.0161 (8)	0.887 (1)	0.055
048	0.569 (1)	0.1301 (9)	0.166 (1)	0.061
O49	0.437 (1)	0.1710 (9)	0.363 (1)	0.060
O50	0.654 (1)	-0.0474 (8)	0.513 (1)	0.056
O51	0.386 (1)	0.0017 (8)	0.042 (1)	0.058
O52	0.902 (1)	0.3526 (7)	0.731 (2)	0.060
O53	0.300 (1)	0.1436 (8)	0.113 (1)	0.057
O54	0.161 (1)	0.3418 (9)	0.860 (1)	0.065
055	0.731 (1)	0.1993 (9)	0.412 (1)	0.060
056	-0.040 (1)	0.3362 (9)	1.002 (2)	0.093
057	0.1272 (10)	0.0677 (6)	0.601 (1)	0.030
058	0.215 (2)	0.288 (2)	1.092 (1)	0.187
059	0.593 (2)	0.545 (1)	0.130 (2)	0.143
O60 \dagger	0.730 (2)	0.475 (1)	0.620 (2)	0.041 (7)
O61 \dagger	0.867 (2)	0.572 (2)	0.847 (2)	0.046 (7)
$062 \dagger$	0.506 (2)	0.463 (1)	0.652 (2)	0.027 (5)
$063 \dagger$	0.708 (2)	0.415 (1)	0.304 (2)	0.026 (5)
O64 \dagger	0.617 (2)	0.331 (1)	0.516 (2)	0.029 (5)
O65 \dagger	0.836 (2)	0.381 (1)	0.469 (2)	0.034 (6)
$066 \dagger$	0.555 (3)	0.273 (2)	0.262 (3)	0.08 (1)
$067 \dagger$	0.668 (2)	0.521 (1)	0.769 (2)	0.033 (6)
O68 \dagger	0.692 (2)	0.330 (1)	0.372 (2)	0.028 (5)
O69 \dagger	0.708 (3)	0.450 (2)	0.175 (3)	0.065 (10)

\dagger Occupancy factor $0.5 ; U_{\text {iso }}$ given.

W0-O1	$1.75(1)$	W5-O32	$1.92(1)$
W0-O3	$1.89(1)$	W5-O23	$2.92(1)$
W0-O5	$1.90(1)$	W6-O28	$1.72(1)$
W0-O4	$1.90(1)$	W6-O19	$1.80(1)$
W0-O2	$1.92(1)$	W6-O24	$1.94(1)$
W0-O14	$2.30(1)$	W6-O27	$1.95(1)$
W1-O6	$1.73(1)$	W6-O32	$2.03(1)$
W1-O15	$1.78(1)$	W6-O23	$2.29(1)$
W1-O13	$1.94(1)$	W7-O29	$1.7(1)$
W1-O10	$1.96(1)$	W7-O20	$1.78(1)$
W1-O2	$2.02(1)$	W7-O25	$1.93(1)$
W1-O14	$2.31(1)$	W7-O24	$1.98(1)$
W2-O7	$1.71(1)$	W7-O33	$2.03(1)$
W2-O16	$1.77(1)$	W7-O23	$2.31(1)$
W2-O11	$1.94(1)$	W8-O30	$1.73(1)$
W2-O10	$1.95(1)$	W8-O21	$1.7(1)$
W2-O3	$2.03(1)$	W8-O25	$1.92(1)$
W2-O14	$2.31(1)$	W8-O26	$1.96(1)$
W3-O8	$1.71(1)$	W8-O34	$2.04(1)$
W3-O17	$1.79(1)$	W8-O23	$2.35(1)$
W3-O11	$1.94(1)$	W9-O31	$1.74(1)$
W3-O12	$1.96(1)$	W9-O22	$1.76(1)$
W3-O4	$2.03(1)$	W9-O26	$1.93(1)$
W3-O14	$2.33(1)$	W9-O27	$1.95(1)$
W4-O9	$1.73(1)$	W9-O35	$2.03(1)$
W4-O18	$1.79(1)$	W9-O23	$2.32(1)$
W4-O12	$1.93(1)$	Sm-O18	$2.4(1)$
W4-O13	$1.95(1)$	Sm-O22	$2.42(1)$
W4-O5	$2.03(1)$	Sm-O17	$2.42(1)$
W4-O14	$2.32(1)$	Sm-O21	$2.43(1)$
W5-O36	$1.74(1)$	Sm-O19	$2.43(1)$
W5-O34	$1.87(1)$	Sm-O20	$2.44(1)$
W5-O33	$1.90(1)$	Sm-O15	$2.46(1)$
W5-O35	$1.90(1)$	Sm-O16	$2.46(1)$
Da			

Data collection: RCRYSTAN (Rigaku Corporation, 1985). Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1989). Program(s) used to solve structure: MITHRIL (Gilmore, 1984). Program(s) used to refine structure: TEXSAN $L S$. Molecular graphics: ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71648 (33 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS 1081]

References

Blasse, G., Dirksen, G. J. \& Zonnevijlle, F. (1981). J. Inorg. Nucl. Chem. 43, 2847-2853.
Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381 , USA.
Naruke, H., Ozeki, T. \& Yamase, T. (1991). Acta Cryst. C47, 489-492.
Naruke, H. \& Yamase, T. (1991). J. Lumin. 50, 55-60.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Ozeki, T., Takahashi, M. \& Yamase, T. (1992). Acta Cryst. C48, 13701374.

Ozeki, T. \& Yamase, T. (1993a). J. Alloy Compd. 192, 28-29.
Ozeki, T. \& Yamase, T. (1993b). Acta Cryst. C49, 1574-1577.
Rigaku Corporation (1985). RCRYSTAN. X-ray Analysis Program System. Rigaku Corporation, Tokyo, Japan.
Stillman, M. J. \& Thomson, A. J. (1976). J. Chem. Soc. Dalton Trans. pp. 1138-1144.

Sugeta, M. \& Yamase, T. (1993). Bull. Chem. Soc. Jpn, 66, 444-449.
Yamase, T. \& Naruke, H. (1991). J. Chem. Soc. Dalton Trans. pp. 285292.

Yamase, T., Naruke, H. \& Sasaki, Y. (1990). J. Chem. Soc. Dalton Trans. pp. 1687-1696.

Acta Cryst. (1994). C50, 330-332

$\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ at 297 and 30 K

Mizuhiko Ichikawa
Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060, Japan

Torbiörn Gustafsson and Ivar Olovsson
Institute of Chemistry, Uppsala University, Box 531, S 75121 Uppsala, Sweden
(Received 19 March 1993; accepted 14 September 1993)

Abstract

In tripotassium hydrogen bis(selenate), $\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$, two selenate groups form a dimer through a hydrogen bond of 2.496 (2) Å, at 30 K (10 K above the low-temperature transition point). This is the shortest hydrogen bond among the members of the $M_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$-type crystals exhibiting the low-temperature phase transition.

Comment

Among the members of the $\mathrm{M}_{3} \mathrm{H}\left(\mathrm{XO}_{4}\right)_{2}$-type crystals (M $=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs} ; X=\mathrm{S}, \mathrm{Se}$) which exhibit a low-temperature (possibly antiferroelectric) phase transition, $\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ has the lowest transition temperature (T_{c}) of 20 K (Endo, Kaneko, Osaka \& Makita, 1983).

In view of the low T_{c} of the title compound, the hydrogen-bond distance just above T_{c} is needed in order to examine the correlation between the transition temperature and hydrogen-bonding distances in the $\mathrm{M}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}-$ type crystals. Thus the structure determination at 30 K was undertaken. The data at 297 K were collected so that comparison may be made with previous work performed with a spherical shaped specimen (Ichikawa, Sato, Komukae \& Osaka, 1992). An as-grown crystal was used in this work which had a hexagonal plate shape and was obtained by evaporation of a saturated solution.

The bond lengths and angles at 297 K agree with the previous results at 299 K (Ichikawa et al., 1992) within 3σ, except for $\mathrm{O}(2)-\mathrm{Se}-\mathrm{O}(4)(4 \sigma)$. The hydrogenbond distance R [2.496 (2) \AA] in $\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ at 30 K is the shortest among the members of the $\mathrm{M}_{3} \mathrm{H}\left(\mathrm{XO}_{4}\right)_{2^{-}}$ type crystals exhibiting the low-temperature phase transition. By including the present results, the validity of a
linear correlation between T_{c} and R is also established for $\mathrm{M}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$-type crystals with zero-dimensional hydrogen-bond networks (Ichikawa, Gustafsson \& Olovsson, 1993).

Fig. 1. The b-axis projection of the structure of $\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ at 30 K . Thermal ellipsoids are scaled to include 50% probability. The B value of the H atoms is set to $2.0 \dot{\mathrm{~A}}^{2}$. Thick lines denote covalent bonds, thin lines indicate short K...O distances.

Experimental

At 30 K
Crystal data
$\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$
$M_{r}=404.2$
Monoclinic
A2/a
$a=10.0464$ (8) \AA
$b=5.8561$ (4) \AA
$c=14.8215(13) \AA$
$\beta=103.629(12)^{\circ}$
$V=847.44$ (10) \AA^{3}
$Z=4$
Data collection
Huber/Stoe/Aracor diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
ABSSTOE (Lundgren, 1983)
$T_{\text {min }}=0.287, T_{\text {max }}=$ 0.466
$D_{x}=3.168 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=25.9-29.9^{\circ}$
$\mu=9.86 \mathrm{~mm}^{-1}$
Hexagonal plate
$0.250 \times 0.233 \times 0.067 \mathrm{~mm}$ Colourless

2543 observed reflections
[All $I>0$ and those $I<0$
with $|I|<15 \sigma(I)]$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=40.00^{\circ}$
$h=-18 \rightarrow 13$
$k=-10 \rightarrow 10$
$l=0 \rightarrow 26$

